

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY, PRAGUE Faculty of Food and Biochemical Technology Department of Food Analysis and Nutrition

Mass spectrometry based strategies for food authentication

Vít Kosek, Jana Hajšlová

Contents

- Reasons for food authentication
- Strategies for food authentication
- Analytical techniques
- Fingerprinting strategy

Reasons for food fraud

Deliberate fraudulent practice for financial profit (adulteration / substitution – premium products/large quantities)

- Increasing price of some commodities (durum wheat)
- Insufficient supply (special teas, olive oil, saffron)
- Quality of the resources (bad harvest, variable composition)
- Restriction of tariffs (*e.g.* Basmati rice)
- Sustainability (illegal unregulated fishing)

Concerns about authenticity

Minor problems:

- Bad production practice
- Inexperienced producer
- Inadequate control of basic resources
- Inadequate control of products

Major problems:

 Deliberate use of (cheap) resources inappropriate for the final product

Deliberate consumer deception

Reasons for authenticity control:

- Consumer protection (food quality and safety)
- Producer protection (protection from competition, which sells cheaper but adulterated products)

Authenticity control

Requirements for authenticity control:

- Knowledge of processing technology, composition of the product and the ingredients
- Employment of advanced analytic techniques
- Experienced analyst

Assessment of compliance:

- With legislation
- with information on the label
- Detection of compounds/attributes specific for adulterants
- Decrease or change of compounds specific for ingredients of the product

Constant development of new analytical strategies is necessary

Authentication

Food authentication is a process which aims on verification of information about constitution, processing and origin of the product as stated on the label.

Steps that can be taken to evaluate product authenticity?

- Check of the documents
- Sensoric analysis
- Analytical evaluation complex chemical composition, aromatic profiles, typical compounds, physicochemical properties

Necessary requirement:

Accredited labs with standard analytical methods which can answer the question about product authenticity

Authentication

Food authentication is a print information about constitution product as stated on the lab

Steps that can be taken to e

- Check of the documents
- Sensoric analysis
- Analytical evaluation co aromatic profiles, typical c properties

In order to have standard methods, state-of the art methods are required ation of of the

Necessary requirement:

Accredited labs with standard analytical methods which can answer the question about product authenticity

Basic authentication strategies

Every authentication strategy must be scientifically sound. i.e. must be precise, reproducible to reliably decide whether the product is authentic.

Present:

• Analytical methods require statistical evaluation of the data

Future:

- Evaluation of big datasets and their analysis by MVA
- Integration of geographical information systems with climate information systems
- Metabolomic analysis to determine the precise information about origin of the product, geographical origin of ingredients and year of harvest.

Food composition

Natural components

Contaminants

Food fraud discovery scheme

Central dogma of systems biology

-omics: Unbiased large-scale analysis of a set of molecules present in the biological system

https://www.ebi.ac.uk/training/online/sites/ebi.ac.uk.training.online/files/user/2760/images/Metabolomics/central_dogma_figure_1_.png

Metabolomics: directly related to biological activity *i.e.* phenotype and biological state

Metabolome

A set of small molecules inside an organism (matrix)

Metabolome

A set of small molecules inside an organism (matrix)

METABOLOME IS INHERENTLY VERY DYNAMIC interaction both within and between biolog Foods contain metabolites from their constituents and systems, and with the many more molecules! **EXTERNAL ENVIRONMENT** Technology + storage +... climatic conditions + soil + pests + agrochemicals

CULTIVAR

Targeted authentication strategies

Quantitation

- Targeted
- Quantitative
- Coverage of small set of compounds
- Biased
- Hypothesis driven *e.g.* Cannabinoid metabolism for Cannabis cultivar authentication

Targeted authentication strategies

Profiling

- Targeted
- Non-quantitative
- Coverage of larger set of metabolites
- Biased commonly a group of compounds related by structure or function
 PAC_1 RT: 0.00-1500 Mass: 100.00-100000 NL: 2.95E9 F: FTMS + p ESIFULTms [100.00-1200.00]
- Hypothesis driven *e.g.* phenolics for wine authentication

Requirements for targeted techniques

- Basically the same for usual targeted methods
- Specificity
- Full method validation usually required for quantitation
- High throughput

Targeted Metabolomics

Lee D. Roberts¹, Amanda L. Souza², Robert E. Gerszten^{1,2}, and Clary B. Clish² ¹Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts ²Broad Institute of MIT and Harvard, Cambridge, Massachusetts

Untargeted strategies for authentication

Fingerprinting

- Non-targeted
- qualitative
- Coverage of large set of compounds
- Least biased
- Hypothesis generating

Requirements for untargeted analytical techniques

- Full spectral information
- Generic conditions
- High throughput (if necessary)
- Good interpretability of the signals is recommended

Molecular resolution

Mass spectrometry

- Weighing molecules
- Molecules need to be ionised
- Ions can be manipulated inside electric or magnetic field
- Mass spectrum: m/z X intensity
- Destructive X very sensitive

Specific

Fingerprinting workflow

- All the parts must be carefully planned
- Quality control must be maintaned during the whole process

Fingerprinting workflow

Data processing, statistical analysis and interpretation is usually the most time consuming steps

Sample preparation

- Generally very simple -> reduction of error
- Generic methods are used -> increasing coverage
- Derivatization may be neded for certain analytes

Data acquisition

Requirements:

- Stable AND repeatable conditions throughout the measurement
- Quality control procedures

- Incorrectly acquired data -> useless results
- A compromise between data complexity, speed and limits of detection

Data processing

One of the most crucial steps in the workflow

Bad data + good processing = bad results Good data + bad processing = bad results Good data + good processing = good results

- Peak picking
- Peak alignment
- Data normalization
- Transformation
- Scaling

Statistical analysis

Univariate statistics

- More traditional approach
- Useful for individual variable evaluation and filtering

Multivariate statistics

- Simplification of multidimensional data
- Useful for evaluation of patterns in the data

Department of Food Analysis and Nutrition

Principal component analysis

Ideal situation

Non-targeted

(10s of samples)

- Hundreds of compounds
- Preferring wealth of information over throughput
- Time consuming data processing
- Time consuming statistical analysis and modelling

Targeted

(100s of samples)

- Small number of analytes
- Throughput over data complexity
- Fast data processing
- Rapid statistical analysis and use of models
- More samples to validate the models

Reasons to go to targeted

- Requires less complex instrumentation (cheaper, less requirements for the analyst ...)
- Easier to automate
- Is generally more specific and faster -> higher throughput
- The number of variables will be small compared to number of samples -> more robust statistical model
- No need for peak realigning when adding new samples

Conclusions

- Mass spectrometry can be used for food authentication in various strategies
- Recently, fingerprinting is becoming preferred strategy
- Targeted analysis after fingerprinting is still required for routine use

